

Detection of Polymers Dissolved in Sea Water

Application Note

Environmental Industry

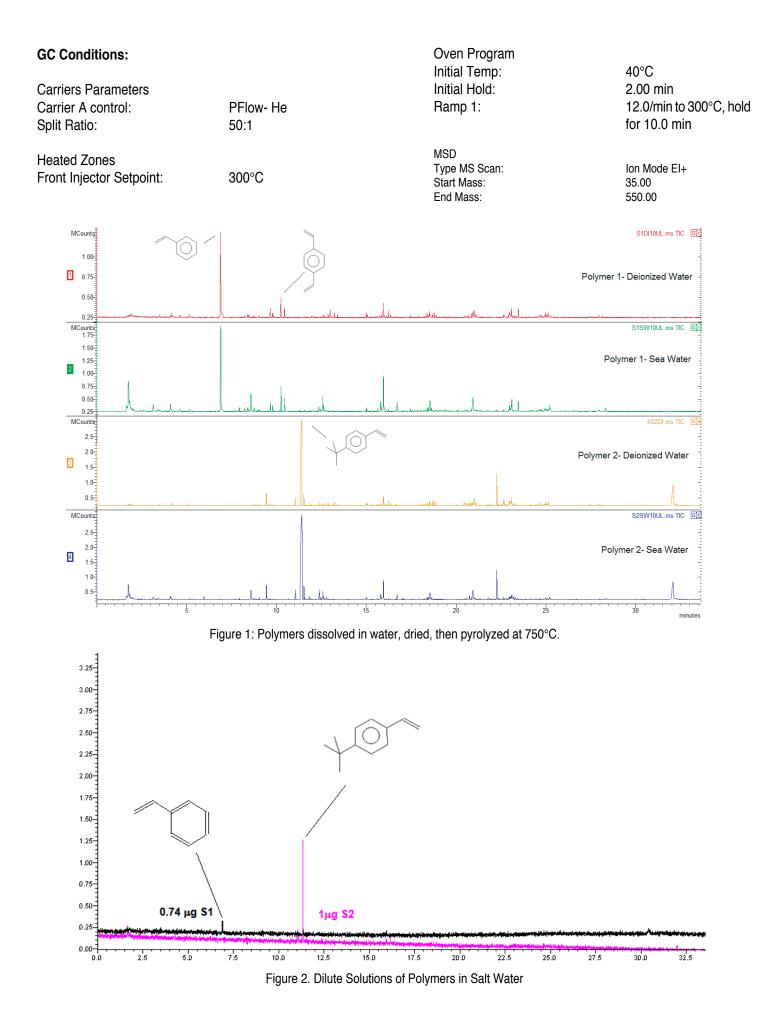
Abstract

Easy Detection of Dissolved Plastic in Sea Water by Pyrolysis GC/MS

Pollution of our waters, from streams to oceans, has been of increasing concern over the last decade. From volatiles to semi-volaties, and more recently dissolved polymers (plastics), these contaminates are coming from both industrial operations and commercial waste. For the analytical scientist, detecting these dissolved polymers is an analytical challenge since they cannot be extracted using traditional methods, like purge and trap, SPE or liquid-liquid extractions. However Analytical Pyrolysis, which uses intense heat to break apart these polymers, can convert them to compounds ammenable for GC analysis.

In figure 1, two styrenic polymers were dissolved in both deionized water and seawater at about 45000 ppm. Ten (10) microliters of each solution were separately added to quartz wool inside two quartz sample tubes, then automatically dried and pyrolyzed. Each polymer was detectable, and showed patterns which differentiated one from the other.

To get a better idea of detection limits, a dilution of each solution was made. An estimated 1000ppm concentrated sample was prepared with 1 microliter being analyzed using the same method. This would be about 1 microgram of each. The largest peaks and monomers of the polymers (Styrene and tert-butyl-Styrene) were still visible, as shown in figure 2.


As only 1 microliter was used, a tube with enough quartz wool can handle as much as 40 microliters of water fairly easily, extending the detection limit to greater than 20ppm. Additionally, once liquid is added, it may be dried manually, so more liquid can be added to further increase sensitivity. In these analyses, the detector was used in SCAN mode. For greater sensitivity, selective ion monitoring may be used.

CDS Pyrolyzer Conditions:

Pyroprobe:	
Dry:	200°C for 2 minutes
Initial:	50°C
Ramp:	10°C/msec
Final:	700°C for 1 Minute
Iso Zones:	
Transfer Line:	300°C
Valve Oven:	300°C

Author:

Karen Sam

CDS Analytical, 465 Limestone Road, P.O. Box 277, Oxford, PA USA 19363-0277 PH: 610 932 3636 www.cdsanalytical.com