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Introduction 

Carbon dioxide is widely recognized today as a “Green Chemistry” 
solvent. The unique physical and chemical properties of carbon dioxide in its 
supercritical state, namely the absence of surface tension, low viscosity, high 
diffusivity, and easily tunable solvent strength provide for utility in a variety 
of industrial and scientific applications.  In the microelectronics fabrication 
industry this non-toxic, environmentally friendly solvent is being heavily 
investigated as an alternative agent for device cleaning, micro-
electromechanical systems (MEMS) drying, and lithographic processing.  
With the emerging advances in fabrication techniques and materials, 
microelectronic device features with dimensions below 100 nm are now 
possible to produce.  At the sub-micron scale, the strong surface tension of 
current aqueous based solvents frequently causes pattern collapse and stiction 
during and after wet processing [1,2].   The introduction of supercritical 
carbon dioxide (SCCO2) to supplant more toxic aqueous solvents, especially 
in the lithographic steps, eliminates such adverse effects.  

 Fortunately, fluorinated photoresist systems that are transparent at the 
advanced 157 nm deep ultraviolet (DUV) optical lithography exposure 
wavelength, while insoluble in most common solvents, readily dissolve in 
SCCO2.  In previous publications we have introduced a model fluorinated 157 
nm resist system that is imageable by 193 nm and E-beam exposure tools.  
This negative-tone resist, poly(tetrahydropyranyl methacrylate-b-1H, 1H –
dihydroperfluorooctyl methacrylate)  [THPMA-F7MA], was processed in 
SCCO2 to produce feature with dimensions ~ 100 nm [3].    

Negative-tone systems, however, have been associated with excessive 
swelling in wet development since the region exposed to DUV light is 
prevented from dissolution by cross-linking mechanisms.  The cross-linked 
polymers form swollen gels, sometimes absorbing large volumes of solvent.  
The work presented here involves a strategy to create a positive-tone resist 
system.  Our method closely resembles the diffusion enhanced silylated resist 
(DESIRE) process [4-5] that has shown successful results in converting 
systems from positive to negative-tone in aqueous base development.  In this 
process OH bonds of methacrylic acid, created by acid cleavage of the THP 
protecting groups from THPMA-F7MA resist upon exposure to DUV and 
heat, are replaced by OSi(CH3)3 [TMS] groups introduced into the polymer by 
hexamethyl disilazane (CH3)3SiHNSi(CH3)3  [HMDS] vapor.  Regions 
containing MAA-F7MA are insoluble to SCCO2, while those converted to 
TMSMA-F7MA are soluble in SCCO2. 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1. Scheme to achieve image reversal and positive-tone CO2 resist. 

 
Figure 1 illustrates the chemical amplification scheme and silylating 

steps. We have demonstrated a solubility switch using this process with the 
originally negative-tone THPMA-F7MA resist.  Fourier transform infrared 
spectroscopy (FTIR) and Rutherford backscattering spectroscopy (RBS) were 

used to provide insights to the chemistry and physical                      TN-23 
phenomena of the silylating process. 

 
 
Experimental 

Block copolymers THPMA-F7MA were synthesized in-house by group 
transfer polymerization.  Details of synthesis and characterization have been 
published in the literature [6].   Measured MW ranged from 7-12 kD by gel 
permeation chromatography (GPC).  The molar composition of 
THPMA:F7MA groups vary from one batch to another, with minor deviations 
from the desired 34:66 ratio that was found to have optimal lithographic 
performance [7].   

Solutions were prepared by dissolving 10 wt% polymer in α,α,α-
trifluorotoluene (TFT) with ~ 5 wt% loading of iodonium perfluorooctyl 
sulfonate photoacid generators.  The solution was stirred for 0.5 hr then 
filtered repeatedly until easily dispensed from a filter-capped syringe.  For 
RBS studies and SCCO2 development, the solution was then filtered directly 
onto a silicon wafer for greater film uniformity immediately before being 
spincoated at 2,500 – 3,500 rpm for 60 seconds.  Post-apply bake (PAB) 
followed at 115 oC for 60-120 seconds, depending on film thickness.  
Exposure was done with an HTG contact aligner at 248 nm.  During flood 
exposures high doses, ~100 mJ/cm2

, were used to ensure high rates of 
deprotection.   Post-exposure bake (PEB) to mobilize acid was done at 115 o C 
for 90 seconds. 

A tightly sealed cylindrical glass container was used to hold liquid 
HMDS.  N2, a carrier gas, was introduced into the gas cylinder with one end 
of the connecting tube submerged in HMDS liquid. Saturated gas was 
transported to a glass container that enclosed samples on top of a hotplate. 
N2/HMDS gas constantly flowed into the container and escaped through a 
valve opening.  Pressure was regulated by the flow rate of N2 gas.  Samples 
were heated on the hotplate inside the glass container during silylation. 

IR data were collected with a Mattson Infinity Gold  FTIR instrument.  
Thin-film samples are applied on a polished NaCl plate manually. The baking 
processes involved samples raised <0.25 mm above the hotplate with coated 
side facing the heating surface.  When transporting samples from hood to IR 
spectrometer, airborne contamination and evaporation might have occurred 
but are unlikely to have major affects on the important peaks relevant to our 
study. 

RBS experiments were performed with a 1.0 MV tandetron He++ 
accelerator at the Cornell Center for Materials Research.  Because polymer 
films are easily degraded by high-energy sources, sampling was done at 
multiple locations on the sample in small doses, and spectra are added linearly 
to produce an averaged plot.  Experimental data are compared with 
simulations performed by RUMP, a software developed at Cornell for RBS 
analysis.  Details on RBS can be found in literature [8].  

 
 
Results and Discussion 

We initially investigated image reversal and SCCO2 processing on a 
macroscopic scale with conditions that have yielded prior successful 
lithographic results.  First, a silicon wafer sample with spincoated resist is 
half-covered by an aluminum foil and flood exposed.  Exposure, PAB, PEB, 
conditions are given in the experimental section.  The sample was then 
processed in SCCO2 (45 oC, 4000 Psig).  As expected, the unexposed side 
dissolved; and the exposed side, CO2-phobic after the removal of THP 
protecting groups, remained.  Next, a sample similarly half-exposed and 
subsequently treated with HMDS (10 minutes, 115 oC) was developed in 
SCCO2.  Both sides dissolved in this case, indicating that the HMDS reacted 
to replace the insoluble OH groups with SCCO2 soluble OSi(CH3)3.  Lastly, a 
third sample was treated to the same steps as the second sample but with a 
final flood exposure before processing.  This time, the solubility is exactly 
opposite of that in the first sample, signifying successful image reversal.  
Figure 2 shows a photograph of the samples discussed. 
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strongly suggests that thermal deprotection did not occur, silylation was 
absent, and the presence of HMDS in the film is by absorption alone.  A 
comparison of this data set to the first three seems to confirm very well our 
interpretations of the FTIR plots. 

Another analytical method available to investigate diffusion of HMDS 
or silylating agents into thin polymer films is RBS.  With this analytical 
technique we can probe the diffusion length, depth concentration profile, and 
density changes in films subjected to silylation.  Figure 4 shows an RBS plot 
comparing Si concentrations in THPMA-F7MA films spincoated on Si wafer, 
originally and those subjected to HMDS vapor at 115 oC for 20 and 40 
minutes.  Spectra for the latter show that Si concentrations in the films vary 
little between the two silylation times.  RUMP simulations indicate that the 
resist film has a low atomic concentration of Si, ~1 %, in the bulk and up to 
~5% in the top 150-250 nm layer.   At the time of this writing, more RBS 
experiments are planned to verify these initial findings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  RBS spectra of resist samples.  The lower data set is from original 
resist while the top two are from resist samples after DUV exposure and 
HMDS/heat treatment. 

  
 
Conclusions 

Our effort at creating a positive-tone CO2 developable resist has yielded 
encouraging results.  FTIR experiments show that cross-linking due to 
anhydride formation is unlikely and that silylation does indeed take place 
when carboxylic acid groups are present when exposed to HMDS vapor at 
elevated temperatures.  With RBS we can begin to understand the diffusion 
process as well as obtain essential information such as depth concentration 
profiles of Si-containing molecules.  We showed image reversal with large 
samples.  Image reversal at micron and sub-micron length-scales is inherently 
more challenging since it involves process optimization in a large, 
multidimensional parameter space.  However, the results obtained to date 
seem to suggest that such is a strong possibility in the foreseeable future. 
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